A New Route to $\alpha\mbox{-TrialkyIsilyI}$ Aldehydes. The First Isolation of $\alpha\mbox{-TrimethyIsilyI}$ Aldehydes

Lucette Duhamel,* Jean Gralak and Abdelhamid Bouyanzer

Université de Rouen, URA no 464 et IRCOF, F-76821 Mont Saint Aignan Cedex, France α -Trimethylsilyl and α -triethylsilyl aldehydes **6** were obtained from trimethylsilyl and triethylsilyl β -bromo enol ethers **1**, using a bromine–lithium exchange and a 1–3 migration of the trialkylsilyl group.

We have shown recently that the reaction of trimethylsilyl β -bromo enol ethers with *tert*-butyllithium followed by condensation with chlorotrimethylsilane leads to trimethylsilyl- β -trimethylsilyl enol ethers¹ (Scheme 1).

We now report that in trying to apply this procedure to the

preparation of such compounds with mixed trialkylsilyl groups, we obtained enol ethers **3** instead of the expected isomeric enol ethers $2.^2$ This result can be explained by an isomerisation of vinylic anions **4** into enolates **5** or by an equilibration of the two species (Scheme 2). Thus we were also

1764

Scheme 1 Reagents and conditions: i, ButLi, THF, -70 °C, ii, ClSiMe₃

Scheme 2 Reagents and conditions: i, Bu^tLi, THF, -70 °C; ii, XSiR₃³; iii, H₂O

 Table 1 Silyl enol ethers 3

3	R ¹	SiR ² ₃	SiR ³ 3	Yield (%)	a 3	R1	SiR ² 3	SiR ³ 3	Yield ^a (%)
a b c d	Me Pr ⁱ Pent Pr ⁱ	SiMe ₃ SiMe ₃ SiMe ₃ SiEt ₃	SiEt ₃ SiEt ₃ SiEt ₃ SiMe ₃	43 40 48 49	e f g	Me Et Pr ⁱ	SiMe ₃ SiMe ₃ SiMe ₃	SiMe ₂ Bu ^t SiMe ₂ Bu ^t SiMe ₂ Bu ^t	46 41 40

^a After chromatography on Florisil.

incited to use this 1–3 migration of the silyl group from oxygen to carbon³ for a new preparation of α -silyl aldehydes **6** and in particular of the hitherto elusive α -trimethylsilyl aldehydes. In fact only α -trialkylsilyl aldehydes with crowded silyl groups have been described. α -Trimethylsilyl aldehydes which are reputed to be very sensitive, losing silicon easily and isomerising to enol ethers, have to date never been isolated;^{4–7} in some cases their formation has been verified by trapping *in situ* with Grignard reagents.^{4b,5}

The silyl enol ethers 3^2 were obtained from β -bromo enol ethers 1 (Z/E 67/33 to 95/5),¹ after treatment with *tert*butyllithium, then reaction with chlorotriethylsilane (**3a**-c), chlorotrimethylsilane (**3d**) or *tert*-butyldimethyl triflate (**3e**-g) (Table 1).

The structural analyses of compounds **3** which is very difficult with classical ¹H and ¹³C NMR spectroscopy, becomes unambiguous with ²⁹Si NMR spectroscopy by using an SPT (Selective Population Transfer) method⁸. The structures of **3b**, **d**, **e** were assigned by this procedure.[†] From their ¹H NMR spectroscopic data and from data of similar compounds,⁸ we have noted that in C₆D₆ the methyl groups on a silicon atom linked to an oxygen atom exhibit resonance at 0.03 ppm while those on a silicon atom linked to a vinyl carbon

Table 2 α -Trialkylsilyl aldehydes 6

6	R ¹	SiR ² 3	Yield ^a (%)	6	R ¹	SiR ² 3	Yield ^a (%)
a	Et	SiMe ₃	50	d	Bu ^r	SiMe ₃	40
b	Pr ⁱ	SiMe ₃	60	e	Pr ⁱ	SiEt ₃	60
c	Pent	SiMe ₃	55	f	Pent	SiEt ₃	53

^{*a*} Of distilled **6**.

Scheme 3

atom exhibit resonance at 0.3 ppm. These observations helped us to establish the structure of the other compounds reported in Table 1.

 α -Trimethylsilyl aldehydes **6** were obtained similarly from bromo enol ethers **1**, after reaction with *tert*-butyllithium and hydrolysis. They were isolated by distillation at room temperature under high vacuum (Table 2).‡ Their ¹H NMR and IR spectra indicate the absence of the corresponding desilylated aldehydes or enol ethers.

We briefly report two of their properties. After heating at 140 °C for 10 min, aldehyde **6d** was entirely isomerised into trimethylsilyl enol ether 7 with predominant (E)-configuration§ (Scheme 3).

It has been noted that the classical preparation of 7 from heptanal (ClSiMe₃, NEt₃, ZnCl₂ cat., Et₂O, reflux 3 h) led predominantly to the (Z)-isomer (E/Z = 33/67).

Finally, condensation of butylmagnesium bromide with aldehyde **6d** followed by treatment with trifluoroacetic acid led exclusively to alkene (*E*)-**8**. This result is explained by a condensation according to the model of Felkin–Anh⁹ and a Peterson¹⁰ elimination without isolation of the intermediate hydroxysilane. For identification, alkenes (*Z*)- and (*E*)-**8** were prepared by reduction of undec-5-yne with diisobutylalumi-

§ The isomerisation of 1-propyl-1-trimethylsilyl epoxide to (Z)-1-trimethylsilyloxypent-1-ene in ether in the presence of zinc bromide was reported to occur *via* α -trimethylsilylpentanal.^{4a}

[†] Compounds **3** were fully characterised by spectroscopic methods. The spectra data of **3d** are given as an example: v (NaCl) cm⁻¹ 1600; $\delta_{\rm H}$ (C₆D₆; 400 MHz) 0.03 (9 H, s), 0.54 (6 H, q, J 8.1 Hz), 0.98 (9 H, t, J 8.0 Hz), 1.06 (6 H, d, J 6.9 Hz), 2.35 (1 H, m, J 6.9 and 1.0 Hz) and 6.79 (1 H, d, J 1.0 Hz); $\delta_{\rm Si}$ (C₆D₆; 400 MHz) -7.0 (C-SiEt₃) and +19.3 (O-SiMe₃). The selective irradiation of the SiMe₃ groups (9 protons) with a pulse of 180° followed by magnetisation on the silicon led to a multiplicity of 10 (*n* + 1) for the signal at +19.3 ppm indicating that the trimethylsilyl group is fixed on the oxygen atom. (Bruker ARX 400 Fourier transform NMR Spectrometer equipped with a Bruker X32 Computer).

[‡] To bromo enol ether 1 (4 mmol) in THF (10 cm³), Bu⁴Li (1.7 mol dm⁻³ in pentane, 10 mmol) was added, under argon. After 150 min at -70 °C, the mixture was warmed to 20 °C (10 min) and treated with saturated aqueous NH₄Cl (5 cm³). After extraction with ether, drying (MgSO₄) and elimination of solvents (15 mmHg), the residue was distilled at room temp. under 0.02 mmHg. The aldehydes 6 were trapped in a vessel cooled at -70 °C. Compounds 6 were fully characterised by spectroscopic methods v (NaCl) cm⁻¹ 1688–1698; $\delta_{\rm H}$ (CDCl₃; 200 MHz) 6a: 9.50 (1 H, d, J 2 Hz); 6b: 9.62 (1 H, d, J 4.4 Hz); 6c: 9.50 (1 H, d, J 3.4 Hz); 6d: 9.64 (1 H, d, J 3.6 Hz); 6e: 9.60 (1 H, d, J 0.5 Hz); 6f: 9.55 (1 H, d, J 3.2 Hz).

nium hydride and sodium in liquid ammonia, respectively (Scheme 4).¶

We are grateful to V. Baudrillard, D. Davoust and G. Plé for the realisation and interpretation of 29 Si NMR spectra and to M. Sidofil for the preparation of reference samples (*E*)- and (*Z*)-8.

Received, 3rd August 1993; Comm. 3/04670B

References

- 1 L. Duhamel, J. Gralak and A. Bouyanzer, *Tetrahedron Lett.*, submitted.
- 2 A. Bouyanzer, Thesis, Rouen 1993.
- 3 For other 1-3 migrations of a trialkylsilyl group from oxygen to carbon, see: G. Simchen and J. Pfletschinger, Angew. Chem., Int.

¶ Compound 8 was analysed by CPG on a methylsilicon HP1 capillary column: Retention time (Z)-8: 23.03 min; (E)-8: 23.57 min.

- D. C. Schindele, Synth. Commun., 1987, 17, 637.
 4 (a) P. F. Hudrlik, R. N. Mistra, G. P. Withers, A. M. Hudrlik, R. J. Rona and J. P. Arcoleo, Tetrahedron Lett., 1976, 1453; (b) P. F. Hudrlik, A. M. Hudrlik, R. N. Mistra, R. N. Peterson, G. P. Withers and A. K. Kulkarni, J. Org. Chem., 1980, 45, 4444; (c) P. F. Hudrlik and A. K. Kulkarni, J. Am. Chem. Soc., 1981, 103, 6251.
- 5 T. Sato, T. Abe and I. Kuwajima, Tetrahedron Lett., 1978, 259.
- 6 G. S. Zaitsega, A. I. Chernyavskii, Y. I. Baukov and I. F. Lutsenko, J. Gen. Chem. USSR (Engl. Transl.), 1976, 46, 840.
- 7 D. C. Chauret and J. M. Chang, Tetrahedron Lett., 1993, 34, 3695.
- 8 V. Baudrillard, D. Davoust and G. Plé, Magn. Res. Chem., submitted.
- 9 M. Cherest, H. Felkin and N. Prudent, *Tetrahedron Lett.*, 1968, 2119; N. T. Anh and O. Eisenstein, *Nouveau J. Chimie*, 1977, 1, 61.
- 10 D. J. Peterson, J. Org. Chem., 1968, 33, 780; P. F. Hudrlik and D. Peterson, Tetrahedron Lett., 1972, 1785.